Mechanism of electron conduction in self-assembled alkanethiol monolayer devices.

نویسندگان

  • Takhee Lee
  • Wenyong Wang
  • M A Reed
چکیده

Electron tunneling through self-assembled monolayers (SAMs) of alkanethiols was investigated using nanometer scale devices that allow temperature-dependent current-voltage, I(V, T), measurements. The I(V, T) measurement results show, for the first time, temperature-independent electron transport characteristics, proving direct tunneling as the transport mechanism in alkanethiol SAMs. The measured tunneling currents can be fitted with theoretical calculations using the modified rectangular barrier model of direct tunneling with a barrier height Phi(B) = 1.42 +/- 0.04 eV and a non-ideal barrier factor alpha = 0.65 +/- 0.01 (that may correspond to effective mass of 0.42 m). From the length-dependent conduction measurement on different alkanethiols of various lengths, the tunneling current exhibits exponential dependence on the molecular length, d, as I proportional, variant exp(-betad), where beta is a decay coefficient that was found to be bias-dependent and agrees with the existing theory of direct tunneling. A zero field decay coefficient beta(0) of 0.79 +/- 0.01 A(-1) was obtained.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Electronic transport in self-assembled alkanethiol monolayers

Electron tunneling through self-assembled monolayers of alkanethiols is investigated. Temperature-dependent current– voltage measurements are performed to distinguish between di erent conduction mechanisms. Temperature-independent electron transport is observed, proving direct tunneling as the dominant conduction mechanism of alkanethiols. An exponential dependence of tunneling current on molec...

متن کامل

Synthesis of Two Compounds with Self-Assembled Monolayer Properties: Riboflavin 2', 3', 4' , 5' Tetra Octadecanoate & Bis (Phosphatidyl Ethanol) Protoporphyrin IX Amide

Riboflavin and protoporphyrin IX are two molecules that participate in oxidation and reduction reactions in the living cell. Changing some functional groups of riboflavin and protoporphyrin IX can provide compounds with self-assembled monolayer properties with wide applications in designing the molecular electronic devices. In this study, the amphiphilic structure of riboflavin and protopor...

متن کامل

Cross-platform characterization of electron tunneling in molecular self-assembled monolayers

Electron tunneling is investigated for the alkanethiol self-assembled monolayers (SAMs) formed using three different device structures spanning from the nanometer to the micrometer scale. The measured current–voltage characteristics for the alkanethiol SAMs can be explained by the classical metal–insulator–metal tunneling model and the tunneling current exhibits overall exponential trend on the...

متن کامل

Microcontact Printing With Octadecanethiol

We investigate various alkanethiol self-assembled monolayer inks for microcontact printing patterns on gold substrates. Our research compares hexadecanethiol with an alkanethiol of higher molecular weight, octadecanethiol. Transport mechanisms of alkanethiols along the gold surface and through the ambient are highly dependant upon the molecular weight of the thiols used, and thus are of particu...

متن کامل

Intrinsic Electronic Conduction Mechanisms in Self-Assembled Monolayers

A review on the mechanisms and characterization methods of molecular electronic transport is presented. Using self-assembled monolayers (SAMs) of alkanethiols in a nanometer scale device structure, tunneling is unambiguously demonstrated as the main conduction mechanism for large bandgap SAMs, exhibiting well-known temperature and length dependencies. Inelastic electron tunneling spectroscopy e...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Annals of the New York Academy of Sciences

دوره 1006  شماره 

صفحات  -

تاریخ انتشار 2003